Serveur d'exploration Santé et pratique musicale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differentiating maturational and training influences on fMRI activation during music processing.

Identifieur interne : 001354 ( Main/Exploration ); précédent : 001353; suivant : 001355

Differentiating maturational and training influences on fMRI activation during music processing.

Auteurs : Robert J. Ellis [États-Unis] ; Andrea C. Norton ; Katie Overy ; Ellen Winner ; David C. Alsop ; Gottfried Schlaug

Source :

RBID : pubmed:22348885

Descripteurs français

English descriptors

Abstract

Two major influences on how the brain processes music are maturational development and active musical training. Previous functional neuroimaging studies investigating music processing have typically focused on either categorical differences between "musicians versus nonmusicians" or "children versus adults." In the present study, we explored a cross-sectional data set (n=84) using multiple linear regression to isolate the performance-independent effects of age (5 to 33 years) and cumulative duration of musical training (0 to 21,000 practice hours) on fMRI activation similarities and differences between melodic discrimination (MD) and rhythmic discrimination (RD). Age-related effects common to MD and RD were present in three left hemisphere regions: temporofrontal junction, ventral premotor cortex, and the inferior part of the intraparietal sulcus, regions involved in active attending to auditory rhythms, sensorimotor integration, and working memory transformations of pitch and rhythmic patterns. By contrast, training-related effects common to MD and RD were localized to the posterior portion of the left superior temporal gyrus/planum temporale, an area implicated in spectrotemporal pattern matching and auditory-motor coordinate transformations. A single cluster in right superior temporal gyrus showed significantly greater activation during MD than RD. This is the first fMRI which has distinguished maturational from training effects during music processing.

DOI: 10.1016/j.neuroimage.2012.01.138
PubMed: 22348885
PubMed Central: PMC3666326


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differentiating maturational and training influences on fMRI activation during music processing.</title>
<author>
<name sortKey="Ellis, Robert J" sort="Ellis, Robert J" uniqKey="Ellis R" first="Robert J" last="Ellis">Robert J. Ellis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Neurology, 330 Brookline Ave, Palmer 127, Boston, MA 02215, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Neurology, 330 Brookline Ave, Palmer 127, Boston, MA 02215</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Norton, Andrea C" sort="Norton, Andrea C" uniqKey="Norton A" first="Andrea C" last="Norton">Andrea C. Norton</name>
</author>
<author>
<name sortKey="Overy, Katie" sort="Overy, Katie" uniqKey="Overy K" first="Katie" last="Overy">Katie Overy</name>
</author>
<author>
<name sortKey="Winner, Ellen" sort="Winner, Ellen" uniqKey="Winner E" first="Ellen" last="Winner">Ellen Winner</name>
</author>
<author>
<name sortKey="Alsop, David C" sort="Alsop, David C" uniqKey="Alsop D" first="David C" last="Alsop">David C. Alsop</name>
</author>
<author>
<name sortKey="Schlaug, Gottfried" sort="Schlaug, Gottfried" uniqKey="Schlaug G" first="Gottfried" last="Schlaug">Gottfried Schlaug</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22348885</idno>
<idno type="pmid">22348885</idno>
<idno type="doi">10.1016/j.neuroimage.2012.01.138</idno>
<idno type="pmc">PMC3666326</idno>
<idno type="wicri:Area/Main/Corpus">001325</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001325</idno>
<idno type="wicri:Area/Main/Curation">001325</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001325</idno>
<idno type="wicri:Area/Main/Exploration">001325</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Differentiating maturational and training influences on fMRI activation during music processing.</title>
<author>
<name sortKey="Ellis, Robert J" sort="Ellis, Robert J" uniqKey="Ellis R" first="Robert J" last="Ellis">Robert J. Ellis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Neurology, 330 Brookline Ave, Palmer 127, Boston, MA 02215, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Neurology, 330 Brookline Ave, Palmer 127, Boston, MA 02215</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Norton, Andrea C" sort="Norton, Andrea C" uniqKey="Norton A" first="Andrea C" last="Norton">Andrea C. Norton</name>
</author>
<author>
<name sortKey="Overy, Katie" sort="Overy, Katie" uniqKey="Overy K" first="Katie" last="Overy">Katie Overy</name>
</author>
<author>
<name sortKey="Winner, Ellen" sort="Winner, Ellen" uniqKey="Winner E" first="Ellen" last="Winner">Ellen Winner</name>
</author>
<author>
<name sortKey="Alsop, David C" sort="Alsop, David C" uniqKey="Alsop D" first="David C" last="Alsop">David C. Alsop</name>
</author>
<author>
<name sortKey="Schlaug, Gottfried" sort="Schlaug, Gottfried" uniqKey="Schlaug G" first="Gottfried" last="Schlaug">Gottfried Schlaug</name>
</author>
</analytic>
<series>
<title level="j">NeuroImage</title>
<idno type="eISSN">1095-9572</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adolescent (MeSH)</term>
<term>Adult (MeSH)</term>
<term>Aging (physiology)</term>
<term>Auditory Perception (physiology)</term>
<term>Cerebral Cortex (physiology)</term>
<term>Child (MeSH)</term>
<term>Child, Preschool (MeSH)</term>
<term>Female (MeSH)</term>
<term>Functional Neuroimaging (methods)</term>
<term>Humans (MeSH)</term>
<term>Magnetic Resonance Imaging (methods)</term>
<term>Male (MeSH)</term>
<term>Music (MeSH)</term>
<term>Task Performance and Analysis (MeSH)</term>
<term>Young Adult (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adolescent (MeSH)</term>
<term>Adulte (MeSH)</term>
<term>Analyse et exécution des tâches (MeSH)</term>
<term>Cortex cérébral (physiologie)</term>
<term>Enfant (MeSH)</term>
<term>Enfant d'âge préscolaire (MeSH)</term>
<term>Femelle (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Imagerie par résonance magnétique (méthodes)</term>
<term>Jeune adulte (MeSH)</term>
<term>Musique (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Neuroimagerie fonctionnelle (méthodes)</term>
<term>Perception auditive (physiologie)</term>
<term>Vieillissement (physiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Functional Neuroimaging</term>
<term>Magnetic Resonance Imaging</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Imagerie par résonance magnétique</term>
<term>Neuroimagerie fonctionnelle</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cortex cérébral</term>
<term>Perception auditive</term>
<term>Vieillissement</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Aging</term>
<term>Auditory Perception</term>
<term>Cerebral Cortex</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adolescent</term>
<term>Adult</term>
<term>Child</term>
<term>Child, Preschool</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Music</term>
<term>Task Performance and Analysis</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adolescent</term>
<term>Adulte</term>
<term>Analyse et exécution des tâches</term>
<term>Enfant</term>
<term>Enfant d'âge préscolaire</term>
<term>Femelle</term>
<term>Humains</term>
<term>Jeune adulte</term>
<term>Musique</term>
<term>Mâle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Two major influences on how the brain processes music are maturational development and active musical training. Previous functional neuroimaging studies investigating music processing have typically focused on either categorical differences between "musicians versus nonmusicians" or "children versus adults." In the present study, we explored a cross-sectional data set (n=84) using multiple linear regression to isolate the performance-independent effects of age (5 to 33 years) and cumulative duration of musical training (0 to 21,000 practice hours) on fMRI activation similarities and differences between melodic discrimination (MD) and rhythmic discrimination (RD). Age-related effects common to MD and RD were present in three left hemisphere regions: temporofrontal junction, ventral premotor cortex, and the inferior part of the intraparietal sulcus, regions involved in active attending to auditory rhythms, sensorimotor integration, and working memory transformations of pitch and rhythmic patterns. By contrast, training-related effects common to MD and RD were localized to the posterior portion of the left superior temporal gyrus/planum temporale, an area implicated in spectrotemporal pattern matching and auditory-motor coordinate transformations. A single cluster in right superior temporal gyrus showed significantly greater activation during MD than RD. This is the first fMRI which has distinguished maturational from training effects during music processing.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22348885</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>08</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-9572</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>60</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2012</Year>
<Month>Apr</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>NeuroImage</Title>
<ISOAbbreviation>Neuroimage</ISOAbbreviation>
</Journal>
<ArticleTitle>Differentiating maturational and training influences on fMRI activation during music processing.</ArticleTitle>
<Pagination>
<MedlinePgn>1902-12</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.neuroimage.2012.01.138</ELocationID>
<Abstract>
<AbstractText>Two major influences on how the brain processes music are maturational development and active musical training. Previous functional neuroimaging studies investigating music processing have typically focused on either categorical differences between "musicians versus nonmusicians" or "children versus adults." In the present study, we explored a cross-sectional data set (n=84) using multiple linear regression to isolate the performance-independent effects of age (5 to 33 years) and cumulative duration of musical training (0 to 21,000 practice hours) on fMRI activation similarities and differences between melodic discrimination (MD) and rhythmic discrimination (RD). Age-related effects common to MD and RD were present in three left hemisphere regions: temporofrontal junction, ventral premotor cortex, and the inferior part of the intraparietal sulcus, regions involved in active attending to auditory rhythms, sensorimotor integration, and working memory transformations of pitch and rhythmic patterns. By contrast, training-related effects common to MD and RD were localized to the posterior portion of the left superior temporal gyrus/planum temporale, an area implicated in spectrotemporal pattern matching and auditory-motor coordinate transformations. A single cluster in right superior temporal gyrus showed significantly greater activation during MD than RD. This is the first fMRI which has distinguished maturational from training effects during music processing.</AbstractText>
<CopyrightInformation>Copyright © 2012 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ellis</LastName>
<ForeName>Robert J</ForeName>
<Initials>RJ</Initials>
<AffiliationInfo>
<Affiliation>Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Neurology, 330 Brookline Ave, Palmer 127, Boston, MA 02215, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Norton</LastName>
<ForeName>Andrea C</ForeName>
<Initials>AC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Overy</LastName>
<ForeName>Katie</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Winner</LastName>
<ForeName>Ellen</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alsop</LastName>
<ForeName>David C</ForeName>
<Initials>DC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schlaug</LastName>
<ForeName>Gottfried</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 DC008796</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DC009823</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DC008796</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>DC009823</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Neuroimage</MedlineTA>
<NlmUniqueID>9215515</NlmUniqueID>
<ISSNLinking>1053-8119</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000293" MajorTopicYN="N">Adolescent</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000375" MajorTopicYN="N">Aging</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001307" MajorTopicYN="N">Auditory Perception</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002540" MajorTopicYN="N">Cerebral Cortex</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002648" MajorTopicYN="N">Child</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002675" MajorTopicYN="N">Child, Preschool</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059907" MajorTopicYN="N">Functional Neuroimaging</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008279" MajorTopicYN="N">Magnetic Resonance Imaging</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009146" MajorTopicYN="Y">Music</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013647" MajorTopicYN="Y">Task Performance and Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>09</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>01</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>01</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22348885</ArticleId>
<ArticleId IdType="pii">S1053-8119(12)00166-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.neuroimage.2012.01.138</ArticleId>
<ArticleId IdType="pmc">PMC3666326</ArticleId>
<ArticleId IdType="mid">NIHMS452875</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Brain. 2006 Oct;129(Pt 10):2593-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 1991 Mar;29(3):315-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2042947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2001 Dec;14(6):1402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11707095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>F1000 Biol Rep. 2009 Oct 14;1:78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20948610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Psychol. 1970 Aug;61(3):303-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5457503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2011 Jan 15;54(2):1231-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20858544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 1998 Dec;121 ( Pt 12):2369-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9874487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2005 Sep;22(6):1521-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16190905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3566</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18958177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cognition. 2000 Dec 15;77(3):251-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscientist. 2010 Oct;16(5):566-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 2004 Aug 6;15(11):1723-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15257135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2001 Aug;11(8):754-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2006 Jul 15;31(4):1771-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16624581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2003 Jul;6(7):767-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12754516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2003 Dec;20(4):2142-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14683718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2006 Apr 15;30(3):917-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16380270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2005 Mar;15(3):275-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15297366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2003 Oct;20(2):1122-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14568481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Rev. 1989 Jul;96(3):459-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2756068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Soc Cogn Affect Neurosci. 2009 Dec;4(4):423-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20035017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2006 Oct 1;32(4):1771-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16777432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2002 Apr;15(4):787-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11906220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1998 Sep 15;18(18):7426-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9736662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2003 Jul;19(3):1233-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12880848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2003 Jul;6(7):682-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12830159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Brain Mapp. 2010 Jun;31(6):872-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20496378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2009 Jun 26;457(2):66-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Cogn. 2005 Nov;59(2):124-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16054741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Psychol Gen. 2006 Aug;135(3):348-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16846269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Cogn. 2007 Feb;63(1):59-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17027134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2009 Jul;1169:205-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19673782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2003 May;19(1):16-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Cogn. 1988 Jun;7(3):348-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3401387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2005 May;163(2):226-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15654589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2005 Dec;28(12):636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16216346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Restor Neurol Neurosci. 2007;25(3-4):399-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17943015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2010 Aug;11(8):599-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20648064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1979 Mar 16;163(2):195-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">427544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2007 Sep;10(9):1198-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17676059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2008 Dec;18(12):2844-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18388350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2010 May;20(5):1144-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19692631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2005 Dec;1060:219-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2002 Jun;3(6):473-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cogn Neurosci. 2010 Apr;22(4):775-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19366283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Cogn Brain Res. 2000 Sep;10(1-2):51-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10978692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 1997 Feb;120 ( Pt 2):229-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9117371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2006 May 1;30(4):1414-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16413796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Neurosci. 2003 Jun 26;4:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12828789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Neurobiol. 2003 Apr;13(2):250-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12744981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Brain Mapp. 2011 May;32(5):771-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20533560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Brain Mapp. 2009 Mar;30(3):859-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18330870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2005 May 1;25(4):1068-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15850725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res Brain Res Rev. 1999 Jan;29(1):26-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9974150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2009 Oct 1;47(4):1894-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychophysiology. 2006 May;43(3):287-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16805867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3172-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2005 Dec;22(12):3255-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13335-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15340158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2007 May;8(5):393-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17431404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2003 Oct;4(10):829-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14523382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2001 Oct;11(10):946-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11549617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2007 Jul;8(7):547-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17585307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson Imaging. 2007 Apr;25(4):696-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17279531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2009 Mar;19(3):712-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 1999 Apr;125(4):417-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10323287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2005 Sep;8(9):1148-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2001 Mar;4(3):317-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11224550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Feb 3;267(5198):699-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7839149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2005 May 1;25(4):1325-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15850749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2010 Oct 15;53(1):26-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20600982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Methods. 2002 Mar;7(1):19-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11928888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2002 Jan;15(1):273-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11771995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2002 Jul;25(7):348-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12079762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2001 Jun;930:281-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11458836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 1999 Jun;9(4):392-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10426418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11209064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anat. 2005 Jul;207(1):3-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16011542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2008 Mar;1124:1-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2007 Jul;130(Pt 7):1718-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1968 Jul 12;161(3837):186-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5657070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2003 Aug;19(4):1417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12948699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2002 Sep;17(1):184-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12482076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cereb Cortex. 2010 Jun;20(6):1350-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19789184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Psychol Sci. 2011 Nov;22(11):1425-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21969312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2001 Feb;13(2):239-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11162265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1994 Apr;14(4):1908-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8158246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2009 Mar 11;29(10):3019-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19279238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2006 May 15;31(1):255-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16427320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroimage. 2005 Apr 15;25(3):653-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15808966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Brain Mapp. 2005 Jul;25(3):345-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15852385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Neurosci. 2009;10:106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson Imaging. 2008 Dec;28(6):1533-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19025961</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Alsop, David C" sort="Alsop, David C" uniqKey="Alsop D" first="David C" last="Alsop">David C. Alsop</name>
<name sortKey="Norton, Andrea C" sort="Norton, Andrea C" uniqKey="Norton A" first="Andrea C" last="Norton">Andrea C. Norton</name>
<name sortKey="Overy, Katie" sort="Overy, Katie" uniqKey="Overy K" first="Katie" last="Overy">Katie Overy</name>
<name sortKey="Schlaug, Gottfried" sort="Schlaug, Gottfried" uniqKey="Schlaug G" first="Gottfried" last="Schlaug">Gottfried Schlaug</name>
<name sortKey="Winner, Ellen" sort="Winner, Ellen" uniqKey="Winner E" first="Ellen" last="Winner">Ellen Winner</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Ellis, Robert J" sort="Ellis, Robert J" uniqKey="Ellis R" first="Robert J" last="Ellis">Robert J. Ellis</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SanteMusiqueV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001354 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001354 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SanteMusiqueV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22348885
   |texte=   Differentiating maturational and training influences on fMRI activation during music processing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22348885" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SanteMusiqueV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Mar 8 15:23:44 2021. Site generation: Mon Mar 8 15:23:58 2021